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Abstract

This report considers the problem of using marker locations from optical motion
capture data to identify and parameterise the underlying human skeleton struc-
ture and motion over time. It is concerned with real-time algorithms suitable for
use within a visual feedback system. The algorithms presented require 3 markers
on each limb segment and can be implemented in a sequential fashion; hence
the computational cost of updating the centres of rotation is independent of the
number of data points previously available. However, a common problem in mo-
tion capture is marker occlusion. Most current methods are only useful for offline
processing or become ineffective when a significant proportion of markers are
missing for a long period of time. This report presents an integrated framework
which predicts the occluded marker positions using a Kalman filter in combina-
tion with inferred information from neighbouring markers and thereby maintains
a continuous data-flow. The results are accurate and reliable even in cases where
all markers on a limb segment are occluded, or one or two markers are non-visible
for a large sequence of frames. Moreover, it investigates several extensions of the
proposed methodology for real-time applications using a sophisticated variable
turn model, together with rotor prediction and unscented theory for filtering. It
compares each individual method according to its accuracy, complexity and pro-
cessing time and suggests the optimal solution for each case. Pre-defined models
are not required and skeleton fitting to this complete data can then be updated
in real-time.
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1
Introduction

1.1. Optical Motion Capture

Optical motion capture is a technology used to turn the observations of a mov-
ing subject (taken from a number of cameras) into 3D position and orientation
information about that subject. Such information can be used to better anal-
yse techniques for sports training (e.g. posture, velocities, accelerations, angles,
trajectories) [1]; a person’s movements for medical reasons or sport performance
[2]; to observe asymmetries, abnormalities in rehabilitation medicine (e.g. gait
in stroke or prosthetic patients) [3, 4, 5]; in the generation of virtual characters
for films or computer games [6]. There are two basic approaches used to capture
such data, markered and markerless. Throughout this work, markered motion
capture is used. The problem of establishing the motion of interest is simplified
by attaching markers of some type to the subject being recorded. These markers
can then be easily located in an image and their movement used to infer the
movement of the person to whom they are attached.

1.2. Literature Review and Motivation

Tracking systems based on skeletal models require knowledge of the lengths of
the skeleton’s limbs, to which limb each marker is attached and the location of
the markers relative to the underlying skeletal joints. So far, many techniques
have been developed that estimate the model parameters by using three markers

1



2 Introduction

on each limb. The approaches to centre of rotation (CoR) localisation can be
separated into two distinct groups. The first group, often referred to as sphere
fitting methods, assumes that all markers remain at a constant distance from
the CoR, but makes no assumptions about relative marker positions [7, 8, 9,
10]. The second group is termed as transformational methods. This family of
methods make the assumption that the markers on a given body segment are
rigidly attached to each other [11, 12, 13, 14].

Many algorithms used to solve this problem first find a rigid body transform
to move the problem into a frame of reference in which the limb segment on one
side of the joint is stationary. A simpler one-sided problem is then solved. In this
report, a technique based on the transformational method is further developed
[14]. However, even with costly professional systems, there are instances where
the system returns no data due to the occlusion of markers by limbs, bodies or
other markers. Each marker must be visible to at least two cameras in each
frame in order to unambiguously establish its position. Although many methods
have been developed to handle the missing marker problem, most of them are
not applicable in real-time and often require manual intervention.

In this report, a real-time approach for estimating the position of occluded
markers using previous positions and information inferred from an approximate
rigid body assumption has been proposed. Without assuming any skeleton model,
we take advantage of the fact that for markers on a given limb segment, the inter-
marker distance is approximately constant. Thus, the neighbouring markers1 pro-
vide us with useful information relevant to the current position of the non-visible
marker. With a continuous stream of accurate 3D data, we can perform real-
time centre of rotation (CoR) estimation, thereby producing skeletal information
for use in visual performance feedback. Moreover, we present several filtering
extensions using a variable turn model and the unscented transformation. A
real-time rotor2 prediction algorithm has been also examined using extrapolation
and Kalman filtering. Finally, we compare the results of each method according
to its accuracy, complexity and processing time discussing the optimum use of
each method.

1.3. Outline of the Report

The body of this report may be broadly divided into 3 sections. Section 1 de-
scribes the mathematical and experimental framework. Chapter 2 describes the
experimental environment including the cameras used for the experiments, the
association between the markers and the limbs, and the clustering of marker data
into groups corresponding to the limb segments to which they are attached.

1Neighbouring markers are considered as markers belonging to the same limb segment.
2Rotor are quantities that perform rotations in Geometric Algebra [15]
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The second section is concerned with the problem of fitting skeletal models
to marker-based optical motion capture data. Chapter 3 studies the problem of
estimating the centres of rotation (joints) between every pair of limb segments
and identifying the optimal skeleton in real-time. It presents an efficient and
accurate method that uses unit quaternions for finding the rotors between 2 sets
of vectors, and then, using these rotors, calculates the CoR.

Section 3 presents an integrated framework which predicts the occluded marker
position and thereby maintains a continuous flow of data. Marker occlusion is a
common phenomenon in motion capture systems due to camera system failure
or marker occlusion by other limbs. Chapter 4 presents a real-time predicting
approach using a Kalman filter in combination with inferred information from
neighbouring markers in order to cope with cases where markers are missing.
This approach takes advantage of the fact that markers located on the same limb
of an articulated body have constant inter-marker distance. Chapter 5 describes
filtering extensions of the previously proposed model using a variable turn model,
as the transition function of the filter, and the unscented transformation within
a Kalman filter for marker predictions. Finally we consider rotor prediction
algorithms using extrapolation and filtering approaches. Chapter 6 presents,
compares and discusses the results of the methods proposed in Chapters 4 and 5.

Finally, Chapter 7 presents conclusions, the optimal solution for each case and
suggestions for future work.
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2
Obtaining 3D marker positions

Motion capture hardware, such as that provided by Phasespace [16], CodaMotion
[17] and Vicon [18], is under constant development, providing real-time acquisi-
tion of labelled 3D marker data. These data can be used for reconstruction of the
human skeleton allowing accurate real-time feedback via tracking and modelling
of human motion.

Optical motion capture has many applications. It can be used to better analyse
techniques for sports training [1]; to observe asymmetries and abnormalities in
rehabilitation medicine (clinical analysis) [3, 4, 5]; for biomechanics (prosthetics,
ergonomics); to study the person’s movements for medical reasons or sport per-
formance [2]; for gait labs; or for visualisation of virtual characters for films and
computer games [6]. Throughout this work, markered motion capture system
will be used in order to provide information related to the human skeleton and
for localisation of the centres of rotation.

This chapter presents the apparatus of the experimental environment. There-
after, it provides more details related to marker-to-limb association, which is very
important for the accurate performance of the system. Finally, it explains the
rigid body dynamics of a body position in terms of rotation and translation from
a ‘reference’ body position, that will be regularly used in later chapters.

5



6 Obtaining 3D marker positions

2.1. Apparatus

In order to overcome the tracking problem, we used a 16 camera and 480 frames
per second motion capture system using modulated LEDs, provided by Phases-
pace [16]. These cameras contain a pair of linear scanner arrays operating at high
frequency each of which can capture the position of any number of bright spots
of light as generated by the LEDs. The markers consist of a control circuit and
bright red LEDs which are wired to a synchronisation box.

For reconstruction it is necessary for each marker to be visible by at least
two cameras in each frame. The system offers a fast rate of capture (480Hz)
and allows the individual markers to be identified by combining the information
from several frames and hence identifying the marker from its unique modulation.
The markers are placed at strategic points on the articulated body so that these
points can be easily and accurately located by the cameras. It is desirable to
allocate the markers such that there is the same number of markers on each limb,
if possible, in order to obtain the same quality of data for all parts of the body
we are interested in. The subject moves in a specified space that can be tracked
by the cameras and the markers attached to its body are tracked over time and
used to reconstruct the three-dimensional pose of the subject at each instant of
time.

Figure 2.1.: Marker-to-limb association example with three markers on each limb. This
example shows the upper body with the marker-to-limb association.

2.2. Marker-to-limb association

Since the three-dimensional trajectory of each marker is available we are able to
determine which markers are attached to which limb on the body. This is done
in two steps:
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1. Firstly, markers attached to the same limb are grouped. This is done by
finding which markers maintain the same distance from each other through-
out the motion. Since the data is noisy we expect that the distance between
the markers does not remain constant. Therefore, the variances of the dis-
tances between markers are calculated and the markers are clustered as
belonging to the same limb if the variance of the distance between them is
less than a certain threshold.

2. Afterwards, association of the groups of markers to specific limbs of the
body is necessary. This is done either manually or automatically by first
calculating the distance between the centroid of each group of markers in
a given time frame and then, according to the model used, the limbs are
identified. It is assumed that the skeleton consists of rigid limbs connected
with ball joints.

The approach described above was implemented in MATLAB [19] with data taken
using the Phasespace equipment to find the marker-to-limb association. Despite
the occlusions and the noisy data, the correct associations were obtained. An
example of associated markers is presented in figure 2.1.

Figure 2.2.: Description of the rigid body. The vector r(t) specifies the position of
the centre of mass, relative to the origin. The rotor R(t) defines the
orientation of the body, relative to a fixed copy placed at the origin. The
xk is a vector in a reference body (in this example in frame k), and xk+m

is a vector in space of the equivalent point of the moving body (in this
example after m frames).

2.3. Rigid Body Dynamics

A rigid body can be viewed as a system of particles moving subject to the con-
straint that all inter-particle distances are fixed. The final body position can be
expressed in terms of a rotation and translation from a fixed “reference” body on
to the body in space (figure 2.2). We let r(t) denotes the position of the centre
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of rotation and xk+m denote the position in space of a point in the body. These
are related by:

xk+m = RxkR̃ + r(t) (2.1)

where xk is a fixed constant vector in the reference copy of the body. In this
manner we have placed all of the rotational motion in the time-dependent rotor
R(t). For more information about rotors and geometric algebra (GA) refer to
[15].



3
Real Time Joint Localisation

3.1. Introduction

The problem of automatic skeleton generation can be separated into three stages.
First is the marker clustering, then the problem of finding the joint location and
finally, the last stage is the identification of the full skeleton. This chapter will
be focused on the second stage, that is the joint localisation, which is also termed
Centre of Rotation (CoR) localisation.

3.2. Related Work

Several papers have focused on methods for localisation of the centre of rotation.
These methods can be separated into two major groups. In the first group,
also known as sphere fitting methods, it is assumed that all the markers remain
a constant distance from the CoR, but that we make no assumptions about
the positions of the markers belonging to the same limb. The second group
of methods, known as transformational methods, assumes all positions of the
markers on a body segment are related to each other in some way.

Sphere fitting

Sphere fitting methods are the most commonly used methods for calculating
the CoR. This group of methods assumes that all markers remain a constant

9



10 Real Time Joint Localisation

distance from the centre of rotation. A first step for solving this problem is to
find a rigid body transformation moving the problem into a reference frame (e.g.
frame 1) so that the limb segment on one side of the joint is viewed as stationary
and then solve a simpler one-sided problem. However, this approach returns an
approximation of the CoR because the transform is calculated from the marker
position measurements. Dorst, in [20], presents a first order approximation which
also illustrates the dependence of the attitude estimation error on the distribution
of the point cloud (in this case the marker locations on the limb segments).

In [7] the Levenberg-Marquardt method was implemented in order to optimise
the location of the centre of rotation and the radii of the marker spheres. A cost
function S = (|xk

m−C|−rm)2 was introduced, where xk
m is the marker position of

the marker m at frame k, C is the centre of the sphere and rm is the radius of the
sphere associated with the marker m. The overall cost is the sum of the individual
costs over all markers and all frames. This algorithm requires a series of weights
to be set, such as perceived accuracies of markers and a spatial reweighting of
data points via a voxel grid. This method also has disadvantages; the inaccuracy
of the heuristics used to set the weight parameters and the non-linear nature of
the solver, making it susceptible to problems with local minima.

Halvorsen et al., in [8], describe a closed form solution using the geometric
properties of the sphere. They used the fact that the perpendicular bisectors of
chords of a sphere intersect at the sphere origin, and every pair of frames provide
an approximate perpendicular bisector for each marker. However, this method
is dependent on which data points are used to form the chords, affecting the
accuracy and effectiveness of the algorithm.

In [21], Gamage et al. also introduced a closed form solution, using a cost
function of the squared differences in the squared distance from the CoR C, to
a marker m, at position xk

m in frame k, and the radius of the sphere associated
with the marker rm. That is

(

(C − xk
m)2 − (rm)2

)2
(3.1)

Cereatti et al, [9], shows that, the cost function used in [21] corresponds to the
minimised cost function used in [8], when all possible chords are used.

An alternative approach provided by Halvorsen, [10], gives a Bayesian analysis
of the algorithm of [21], providing a first order approximation of the effect of
isotropic Gaussian noise upon the algorithm. An extension to [10] can be achieved
by assuming that the measured points are the result of Gaussian noise only in
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the axial direction1. Hence, the cost function of [21] can be written as:

S =
∑

k

∑

m

(

(ek
m + rm)2 − (rm)2

)

=
∑

k

∑

m

(

(ek
m)2 + 2rmek

m

)

(3.2)

where the error ek
m is equal to ek

m =
√

(C − xk
m)2 − rm. Therefore, the cost

value is dependent on the radii rm and the error ek
m so the algorithm will tend to

underestimate the radii due to the second term, 2rmek
m, being linearly dependent

on the radii.
The result of the algorithm proposed in [21] was recently used in Cerveri et al.

([22], [23]) who attempted to find an optimal fit for a hand skeleton.

Transformational

The transformational method assumes that all positions of the markers are rigidly
attached to limb segments. Such an approach was implemented in [11]. A tech-
nique for using magnetic motion capture data to determine the joint parameters
of an articulated hierarchy was described in [12]. This technique makes it possible
to determine limb lengths, joint locations, and sensor placement for a human sub-
ject without external measurements, just from the motion data acquired during
the capture session. The parameters are computed by performing a linear least
squares fit of a rotary joint model to the input data. In many recent papers, such
as [13], the same techniques are applied but the orientation is obtained from sets
of optical markers.

In [14] a sequential algorithm was presented to locate the rotation centres of a
human skeleton from marker data assuming that all markers on a body segment
are attached to a rigid body. This method does not suffer from optimisation steps
with computational requirements that grow with the amount of data supplied
([21], [24]) and no user feedback to set marker weights, as in [7], are needed. The
method is closed form, thus enabling real-time implementation.

3.3. Finding the Rotor between 2 sets of vectors

using Unit Quaternions

Assuming that labelled data are available (through the Phasespace system which
is used in our experiments), and the tracking problem is therefore solved, the
next step is to divide the markers into sets of markers attached to each limb
segment. This can be achieved using a cost function along with a number of

1The axial direction is that parallel to a line from the centre of the sphere to the true marker
location
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different clustering techniques. The next stage is the localisation of the joints in
each frame. Before the localisation of the joints, we have the problem of how to
extract the rotation of two limbs between frames. We therefore seek an optimal
estimation of the rotor expressing the rotation between the marker locations of
a given limb segment (‘referring’ frame) and the new rotated locations on future
frames. The algorithm used for finding estimates of rotors within this report, is
that proposed by Horn [25].

If we take a set of labelled points {xi} and the same set of points after an
unknown rotation R(t), {wi}, then the problem of finding the unknown rotor
(unit quaternion) R can be formulated as,

R = arg max
n
∑

i=1

(

RxiR̃
)

· wi (3.3)

In order to avoid introducing quaternion terminology and methods, we can ex-
press the solution in terms of Geometric Algebra (for more details about GA see
[15]). To clarify the following equations, the marker index i will temporally be
suppressed. Let:

R = a + B1e23 + B2e13 + B3e12 (3.4)

xi = x1e1 + x2e2 + x3e3 wi = w1e1 + w2e2 + w3e3 (3.5)

where a is a scalar, e1, e2, e3 are orthogonal vectors in the 3-D space, and e23,
e31 and e12 are the unit bivectors as reported in [26]. Each of these encodes a
distinct plane, and there are 3 of them to match the 3 independent orthogonal
planes in the 3-D space.
Then:

(RxiR̃) · wi = a2(x · w) + 2aB1(x3w2 − x2w3) + 2aB2(x3w1 − x1w3)

+ 2aB3(2x2w1 − 2x1w2) + B2
1(x1w1 − x2w2 − x3w3)

+ 2B1B2(−x2w1 − x1w2) + 2B1B3(x3w1 + x1w3)

+ B2
2(−x1w1 + x2w2 − x3w3) + 2B2B3(−x3w2 + x2w3)

+ B2
3(−x1w1 − x2w2 + x3w3)

This can be expressed as follows:

R = arg max

n
∑

i=1

(

RT
υ NRυ

)

(3.6)

where:

Rυ =









a
B1

B2

B3
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N =









x1w1 + x2w2 + x3w3 x3w2 − x2w3 x3w1 − x1w3 x2w1 − x1w2

x3w2 − x2w3 x1w1 − x2w2 − x3w3 −(x2w1 + x1w2) x3w1 + x1w3

x3w1 − x1w3 −(x2w1 + x1w2) −x1w1 + x2w2 − x3w3 x3w2 − x2w3

x2w1 − x1w2 x3w1 + x1w3 x3w2 + x2w3 −x1w1 − x2w2 + x3w3









In terms of limb motion we note that x1, x2, x3 and w1, w2, w3 correspond to
values given below, with xk

i , yk
i , ck

x and ck
y defined in figure 3.1.

x1 = xk
1 − ck

x w1 = xk+m
1 − ck+m

x

x2 = xk
2 − ck

x w2 = xk+m
2 − ck+m

x (3.7)

x3 = xk
3 − ck

x w3 = xk+m
3 − ck+m

x

ck
x =

xk
1 + xk

2 + xk
3

3
ck+m
x =

xk+m
1 + xk+m

2 + xk+m
3

3
(3.8)

As a valid rotor must always obey the property RR̃ = 1 it must be the case
that RT

υ Rυ = 1. If this condition is relaxed and normalisation is introduced into
the above matrix expression we have:

R = arg max

(

RT
υ

∑n
i=1 (N) Rυ

RT
υ Rυ

)

(3.9)

Figure 3.1.: The motion of two limbs with a time-difference of m frames.

This expression is now in the form of the Rayleight Quotient;
∑n

i=1 (N) is
clearly Hermitian and the value of R at the maximum value of the expression to be
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maximised. Thus, provides a least squares estimate of the required rotor, where
the eigenvector associated with the greatest eigenvalue maximises the matrix
product. Therefore the rotor Rυ which corresponds to the rotation is equal to
that eigenvector.

3.4. Finding the Centre of Rotation (CoR)

Locating the CoRs is important in both computer graphics and rehabilitation
medicine. It is a crucial step in acquiring a skeleton from raw motion capture data.
In this work we used an algorithm based on the method in [14], which considers
a formulation of the problem that takes full advantage of the simplification that
all markers on a body segment are attached to a rigid body. The assumptions
required for implementing this procedure are:

• the joint sought is between two rigid bodies, and

• each rigid body has an non-degenerate set of markers.

We further assume that each limb has at least three markers, which is the mini-
mum number of markers for precise calculation of the rotation.

3.4.1. Cost function

The method used to estimate the centres of rotation is a variation of the least
squares solution proposed in [27]. The main principles are illustrated below.

Suppose we place markers on two joint limb segments (x and y) of a body. Let
that body perform some movements so that the markers can be tracked easily
over time by the cameras. Let the centre of rotation for a pair of joint limb
segments in frame k be Ck and the vectors from the centre of rotation to markers
in the reference frame, be denoted by ai

x for limb x and aj
y for limb y where i and

j are labels for which marker we are referring to.
Given the set of 3D coordinates of each marker over time and given that we

already know which limb each marker is attached to, we try to find the CoR of
the joint. We initially consider each joint and the pair of limbs rotating about it
independently. The position of the markers in frame k is given by:

xk
i = Ck + Rk

xa
i
xR̃

k
x yk

j = Ck + Rk
ya

j
yR̃

k
y (3.10)

Let bk
ij be the vector from yk

j to xk
i , that is:

bk
ij = xk

i − yk
j = Rk

xa
i
xR̃

k
x − Rk

ya
j
yR̃

k
y (3.11)

Figure 3.2 presents a typical marker placement with the bk
ij , ai

x and aj
y as shown.



3.4 Finding the Centre of Rotation (CoR) 15

Figure 3.2.: A typical marker placement with relevant markers shown.

Now a cost function S can be constructed that has a global minimum at the
correct values of ai

x and aj
y if the data is noise free. As we shall see, this minimum

is a good estimate in the presence of moderate noise on the readings of marker
positions.

S =
m
∑

k=1

nx
∑

i=1

ny
∑

j=1

[

bk
ij −

(

Rk
xa

i
xR̃

k
x − Rk

ya
j
yR̃

k
y

)]2

(3.12)

where nx is the number of markers on limb x, ny is the number of markers on
limb y and m is the number of frames used for the calculations.

3.4.2. Minimising the Cost function

The cost function can be expanded to give:

S =
m
∑

k=1

nx
∑

i=1

ny
∑

j=1

[

(

bk
ij

)2 − 2bk
ij ·
(

Rk
xa

i
xR̃

k
x − Rk

ya
j
yR̃

k
y

)

+
(

ai
x

)2
+
(

aj
y

)2 − 2Rk
xa

i
xR̃

k
x · Rk

ya
j
yR̃

k
y

]

Note that under the assumption that there are at least 3 markers on each limb,
each of the Rk

x and Rk
y can be reconstructed in a least-squared sense. Now differ-

entiating w.r.t. the ai
x and aj

y vectors using the standard results a ·RbR̃ = R̃aR ·b
and ∂a (a · b) = b.

∂ai
x
S = 2

m
∑

k=1

ny
∑

j=1

[

−R̃k
xb

k
ijR

k
x + ai

x − R̃k
xR

k
ya

j
yR̃

k
yR

k
x

]

(3.13)

∂aj
y
S = 2

m
∑

k=1

nx
∑

i=1

[

−R̃k
yb

k
ijR

k
y + aj

y − R̃k
yR

k
xa

i
xR̃

k
xR

k
y

]

(3.14)

An alternative derivation of the above is presented in Appendix A.
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In order to get the minimum of the cost function, we require the partial deriva-
tives to be equal to 0. Thus, from equation 3.13 we obtain:

m
∑

k=1

ny
∑

j=1

ai
x =

m
∑

k=1

ny
∑

j=1

{

R̃k
xb

k
ijR

k
x + R̃k

xR
k
ya

j
yR̃

k
yR

k
x

}

mnya
i
x =

m
∑

k=1

ny
∑

j=1

{

R̃k
xb

k
ijR

k
x + R̃k

xR
k
ya

j
yR̃

k
yR

k
x

}

ai
x =

1

m

m
∑

k=1

R̃k
xb

k
i R

k
x +

1

m

m
∑

k=1

R̃k
xR

k
y āyR̃

k
yR

k
x (3.15)

āx =
1

nx

nx
∑

i=1

[

1

m

m
∑

k=1

R̃k
xb

k
i R

k
x +

1

m

m
∑

k=1

R̃k
xR

k
y āyR̃

k
yR

k
x

]

āx =
1

m

m
∑

k=1

R̃k
xb̄

kRk
x +

1

m

m
∑

k=1

R̃k
xR

k
y āyR̃

k
yR

k
x (3.16)

where

āx =
1

nx

nx
∑

i=1

ai
x āy =

1

ny

ny
∑

j=1

aj
y (3.17)

bk
i =

1

ny

ny
∑

j=1

bk
ij bk

j =
1

nx

nx
∑

i=1

bk
ij (3.18)

and

b̄k =
1

nxny

nx
∑

i=1

ny
∑

j=1

bk
ij (3.19)

Similarly, from equation 3.14:
m
∑

k=1

nx
∑

i=1

aj
y =

m
∑

k=1

nx
∑

i=1

{

−R̃k
yb

k
ijR

k
y + R̃k

yR
k
xa

i
xR̃

k
xR

k
y

}

mnxa
j
y =

m
∑

k=1

nx
∑

i=1

{

−R̃k
yb

k
ijR

k
y + R̃k

yR
k
xa

i
xR̃

k
xR

k
y

}

aj
y =

1

m

m
∑

k=1

−R̃k
yb

k
j R

k
y +

1

m

m
∑

k=1

R̃k
yR

k
xāxR̃

k
xR

k
y (3.20)

āy =
1

ny

ny
∑

i=1

[

1

m

m
∑

k=1

−R̃k
yb

k
j R

k
y +

1

m

m
∑

k=1

R̃k
yR

k
xāxR̃

k
xR

k
y

]

āy =
1

m

m
∑

k=1

−R̃k
y b̄

kRk
y +

1

m

m
∑

k=1

R̃k
yR

k
xāxR̃

k
xR

k
y (3.21)
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Substituting equation 3.21 into equation 3.16 we obtain:

A1āx = d1 (3.22)

where:

A1 =

[

I − 1

m2

m
∑

k=1

{

R̃k
xR

k
y

(

m
∑

k′=1

R̃k′

y Rk′

x R̃k′

x Rk′

y

)

R̃k
yR

k
x

}]

d1 =
1

m

m
∑

k=1

R̃k
xb̄

kRk
x −

1

m2

m
∑

k=1

{

R̃k
xR

k
y

(

m
∑

k′=1

R̃k′

y b̄k′

Rk′

y

)

R̃k
yR

k
x

}

(3.23)

Similarly, substituting the equation 3.16 into equation 3.20 we obtain:

A2āy = d2 (3.24)

where:

A2 =

[

I − 1

m2

m
∑

k=1

{

R̃k
yR

k
x

(

m
∑

k′=1

R̃k′

x Rk′

y R̃k′

y Rk′

x

)

R̃k
xR

k
y

}]

d2 = − 1

m

m
∑

k=1

R̃k
y b̄

kRk
y +

1

m2

m
∑

k=1

{

R̃k
yR

k
x

(

m
∑

k′=1

R̃k′

x b̄k′

Rk′

x

)

R̃k
xR

k
y

}

(3.25)

Then, āx and āy are found using the pseudo-inverse, which provides us with
the Least Square solutions:

āx = (AT
1 A1)

−1AT
1 d1 āy = (AT

2 A2)
−1AT

2 d2 (3.26)

Since Rk
xa

i
xR̃

k
x = xk

i − Ck (equation 3.10), then:

Rk
xāxR̃

k
x =

1

nx

nx
∑

i=1

xk
i − Ck

⇒ Ck =
1

nx

nx
∑

k=1

xk
i − Rk

xa
i
xR̃

k
x (3.27)

Similarly,

Rk
y āyR̃

k
y =

1

ny

ny
∑

j=1

yk
j − Ck

⇒ Ck =
1

ny

ny
∑

k=1

yk
j − Rk

ya
j
yR̃

k
y (3.28)
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Hence,

Ck =
1

2nx

nx
∑

i=1

xk
i +

1

2ny

ny
∑

j=1

yk
j − 1

2

(

Rk
xāxR̃

k
x + Rk

y āyR̃
k
y

)

(3.29)

The above solution is a matrix-based approach. We observed that equations
3.16 and 3.21 are a set of simultaneous equations and so can be directly solved
via the inversion of a 3nx + 3ny matrix. The exact form of the matrix equation
solved is given below:

m ai
x =

m
∑

k=1

R̃k
xb̄

kRk
x +

m
∑

k=1

R̃k
xR

k
y āyR̃

k
yR

k
x

m ai
x −

m
∑

k=1

R̃k
xR

k
y āyR̃

k
yR

k
x =

m
∑

k=1

R̃k
xb̄

kRk
x (3.30)

Similarly,

m aj
y =

m
∑

k=1

R̃k
y b̄

kRk
y +

m
∑

k=1

R̃k
yR

k
xāxR̃

k
xR

k
y

m aj
y −

m
∑

k=1

R̃k
yR

k
xāxR̃

k
xR

k
y =

m
∑

k=1

R̃k
y b̄

kRk
y (3.31)

Thus, we have nx 3D linear vector equations in ai
x, so the problem can be

reformulated as:

M a = b (3.32)

where

M =

[

mI3 Mx

My mI3

]

(3.33)

and

Mx =

[

−
∑

k

R̃k
xR

k
ye1R̃

k
yR

k
x −

∑

k

R̃k
xR

k
ye2R̃

k
yR

k
x −

∑

k

R̃k
xR

k
ye3R̃

k
yR

k
x

]

My =

[

−
∑

k

R̃k
yR

k
xe1R̃

k
xR

k
y −

∑

k

R̃k
yR

k
xe2R̃

k
xR

k
y −

∑

k

R̃k
yR

k
xe3R̃

k
xR

k
y

]

a =

[

āx

āy

]

, b =

[
∑

k R̃k
xb̄

kRk
x

−
∑

k R̃k
y b̄

kRk
y

]

and e1, e2, e3 are the three basis vectors.

A clear saving in computational expense can be made by noticing that Mx = MT
y .
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If a simple average is to be used of the estimate of the joint, the size of the
matrix requiring inversion can be reduced to a constant 6 × 6 by applying the
above algorithm to find the pair of vectors from the centre of mass of the markers
on each limb segment to the CoR. The form of the matrix allows for an efficient
block based inverse to be applied to further reduce the required computation.
The block based inverse of of equation 3.33 can be achieved using the following
transformation:

[

A B
C D

]−1

=

[

A−1 + A−1BS−1
A CA−1 −A−1BS−1

A

−S−1
A CA−1 S−1

A

]

(3.34)

where SA = (D − CA−1B) is the Schur complement of A. Clearly A−1 is trivial,
so the only computationally expensive matrix inverse needed is S−1

A that is simply
the inverse of a 3× 3 matrix. Thus we exchange a single 6× 6 matrix inverse for
a 3 × 3 one and 5 general matrix multiplies, a single full matrix addition and 4
matrix scalings. This algorithm can be implemented in a sequential fashion and
as such the computational cost of updating the centres of rotation is independent
of the number of data points previously available. Hence, this method is closed
form, and therefore more practical and computationally less costly, enabling real-
time implementation.

As can be seen from equations 3.16 and 3.21, all of the terms, in the linear
system to be solved, can be sequentially updated as more data becomes available
and the only step which much be repeated at each stage is the actual matrix
inversion.

In a real-time system the choice of base frame, the data frame relative to
which all rotors are computed, is restricted to those that are available. As it is
desirable to compute an estimate of the CoRs as quickly as possible, the obvious
choice would be to simply take the first frame in which all the markers on the
relevant pair of limb segments are present. However, to avoid any unnecessary
re-computation of rotors and to maintain the sequential nature of the algorithm,
all rotors are computed as the compound of a rotor taking a given frame back to
the first frame in which all the markers of the single relevant cluster are present
and a rotor to the first frame in which both sides are present. Figure 3.3 shows
how rotors change during frames.

When the centres of rotations are found, the limb lengths can be estimated by
averaging the distance between the trajectories of each joint, as reported in [28].
Figure 3.4(a) shows the labeled marker positions of a lower body as returned by
the Phasespace system. Figure 3.4(b) shows the same markers with their CoRs
and the limb segments the markers are attached to, implemented in real-time
using the above methodology. Having established the necessary parameters, a
skeletal model can be fitted to the data. However, due to occlusions, there are
instances where not all markers are available. Using the above procedure we
can estimate the position of the centre of rotation Ĉk using the Rk

w and the last
available value of āw, where w = {x, y} (assuming that its value does not change
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Figure 3.3.: The rotors during frames.

over time). Hence, using eq. 3.10 the CoR can be estimated using information
from the limb segment which has all its markers visible. Thus,

Ĉk = wk
i − Rk

wai
wR̃k

w (3.35)

This approach gives accurate CoR estimates only in cases where one limb segment
has all its markers available, otherwise it fails to return the CoR. Therefore, a
method of handling cases with marker occlusions is needed.

(a) (b)

Figure 3.4.: (a) The labeled markers positions, as returned by the Phasespace system,
(b) the marker positions with their CoRs and limb segments.



4
Estimating the occluded markers

The Phasespace [16] system provides 16 cameras and modulated LEDs. Each
marker must be visible by at least two cameras in each frame in order to return its
3D position. Hence, the markers are placed at strategic points on the articulated
body so that these points can be easily and accurately located by the cameras.
However, a common phenomenon encountered in motion capture is that markers
return ‘NULL’ values due to occlusions or ambiguities in the system, and there
are thus frames with partial data. A major cause of missing markers is that a
marker is occluded by limbs, bodies, props or other markers. As has been seen,
for the accurate calculation of the centre of rotation between two limbs, three
markers on each limb are required. As missing data can cause failure in the CoR
estimation, it is essential to find a way of ‘recapturing’ the missing data.

This section describes an integrated framework which produces real-time pre-
diction of the missing markers in order to drive real-time centre of rotation esti-
mation. The proposed approach uses a Kalman filter in combination with inferred
information from neighbouring markers, taking advantage of the fact that mark-
ers on a given limb segment have constant inter-marker distance.

Hereafter, in this report, vectors will be designated in bold font to distinguish
them from other symbols and avoid any confusion.

21
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4.1. Related Work

A number of methods that can deal with this problem have been proposed, but
these do not generally run in real time and often require manual intervention.
Also, many of these methods behave suboptimally with diverse motions, a high
percentage of missing markers and/or external occlusions. A popular method
is the interpolation of the missing data using linear or non-linear approaches
[29, 30, 31, 32, 33]; this can produce very accurate results, but is useful only
in post-processing. Another drawback of the interpolation methods is that they
can effectively estimate the missing markers if they are missing for only a short
period of time, typically less than 0.5 seconds. Some MoCap systems also provide
missing markers recovery solutions using interpolation techniques in combination
with kinematic information, but they do not reliably work in real-time.

Another commonly used method is to ignore the frames with ‘NULL’ data and
use only the frames which have useful information. This approach is very simple
but there exist cases where the omission of specific data could lead to the loss of
useful information. Also, long running occlusions leading to a large sequence of
missing data or when a significant portion of markers are missing for extended
period of time, can cause complete failure of the system.

Rhijn and Mulder, [34], proposed a novel model-based optical tracking and
model estimation system for composite interaction devices. The proposed system
automatically constructs the geometric skeleton structure, degrees of freedom
(DOF) relations, and DOF constraints between segments, and thus pre-defined
models are not required. The system supports segments with only a single marker,
so that interaction devices can be small with a low number of markers. However,
it is an off-line procedure and cannot be used in real-time applications.

Dorfmüller in [35] used an extended Kalman filter (EKF) to predict the missing
markers using previously available marker information while Welch et al. in [36]
used an EKF to resolve occlusions based on the skeletal model of the tracked
person. Again, these methods require manual intervention or become ineffective
in cases where markers are missing for an extended period of time.

Herda et al., in [37] and [38], used a post-processing approach to increase the
robustness of a motion capture system by using a sophisticated human model.
They can predict the 3D location and visibility of the markers increasing the
robustness of the marker tracking and reducing the need for human intervention
during the reconstruction process. The neighboring markers that share kinematic
relations with the occluded markers can help to estimate the (few) isolated mark-
ers even if they are missing over a long period of time. However, the skeleton
information must be known a priori in order to apply this method. [39] also takes
advantage of the fact that the markers on a limb have fixed inter-marker pair-
wise distances. Thus, in the case where a marker is missing, its position can be
recovered through the distance constraints imposed by the markers of the same
limb. This approach may become ineffective when all or a significant number of
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markers are missing so that the limb is unable to be inferred from the available
neighboring markers. Ringer and Lasenby, [28], also present an automatic method
to identify indistinguishable markers based on cliques1. However, this requires
an off-line procedure in order to determine marker cliques and parameters of the
skeletal structure.

In [40], a style-based inverse kinematic method has been developed where a
Gaussian Process Latent Variable Model (GPLVM) was used along with a pre-
specified kinematic model. Although it is a real-time processing method, the
knowledge of skeleton information eliminates its use more generally. Chai and
Hodgins, [41], present a method that uses the neighbouring markers to estimate
the missing marker in the current frame. They proposed a local linear model from
these neighbours and then reconstruct the full pose of the frame by conducting
an optimisation in the space constrained by the model. This method is effective
but the set of controls signals, i.e. markers, and the skeleton information must
be known before the session.

Recently, Liu et al., in [42, 43], presented a piecewise linear approach to estimat-
ing the human motions from a pre-selected set of informative markers (principal
markers). A pre-trained classifier identifies an appropriate local linear model for
each frame. Missing markers are then recovered using available marker positions
and the principal components of the associated model. However, the pre-training
session and the classifier limit the approach to off-line applications.

Some other methods exist which deal with the cases where there is inadequate
data and the centre of rotation is calculated with the use of two markers only.
However this approach is effective only in cases where data from only one marker
is missing each time, and is therefore not very realistic. Also, in this approach,
information on the rotation around the axis joining the two remaining markers
on the limb cannot be determined.

The aim of predicting the position of the occluded markers is for the calculation
of the CoR between the two limbs. Instead of predicting the position of the
occluded markers and then calculating the CoR, might a direct prediction of
the CoR be possible? Unfortunately, this is not feasible because calculating the
CoR when all the markers are active requires information regarding to the rotors
between the previous and the current frames, Rk−1,k

x . This rotor is used for
the calculation of the rotor R1,k

x , which gives the rotation between the current
frame and a reference frame (see figure 3.3). Therefore, a method based on the
prediction of the occluded markers will be more practicable.

4.2. Kalman Filter

The Kalman filter [44] is a commonly used method for tracking in many different
areas, such as autonomous or assisted navigation, interactive computer graph-

1Markers in a clique have constant distances between each other
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ics and motion prediction. The simplicity and the robust nature of the filter
itself makes it very popular and practical for almost every design of prediction
algorithm.

The process model to update the state of the Kalman filter is given by (4.1),
where the state xk at frame k is obtained from the state at frame k − 1;

xk = Axk−1 + Buk−1 + wk−1 (4.1)

where A is the state transition model, B is the control input model, uk−1 is the
control vector and wk−1 is the process noise. The measured data Zk is

Zk = Hxk + vk (4.2)

where H is the observation model and vk is the observation noise. w and v are
assumed to be zero mean multivariate normal with covariance Q and R respec-
tively.

The predicted state yk and its error Ek can be written as

yk = Ax̂k−1 + Buk−1 Ek = APk−1A
T + Q (4.3)

where x̂ refers to the estimate and P is the covariance of the state estimate.
The Kalman gain between actual and predicted observations is:

Kk = EkH
T
(

HEkH
T + R

)−1
(4.4)

Thus given an estimate x̂k−1 at k − 1, the time update predicts the state value
at frame k. The measurement update then adjusts this prediction based on the
new yk. The estimate of the new state is

x̂k = yk + Kk (Zk − Hyk) (4.5)

The innovation gain Kk is chosen to minimise the steady-state covariance of
the estimation error given the state noise covariance p(w) ∼ N(0, Q) and the
observation noise covariance p(v) ∼ N(0, R). The measurement noise variance
R might change with each time step or measurement. Also, the process noise
variance Q might change in order to adjust to different dynamics. However,
in this work it is assumed that they stay constant during the filter operation.
Finally, the error covariance matrix of the updated estimate is;

Pk = (I − KkH)Ek (4.6)

In this chapter we will use a constant velocity model. Our goal is to build a
model that predicts the current state using previous states. The equation which
deals with the constant velocity model and expresses the next possible position
of the marker can be formulated as given below:

yk = xk−1 + ẋk−1dk (4.7)
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where xi and ẋi are the position and velocity in frame i, and dk is the time step.
The assumption made here is that the acceleration remains stable during two
frames in a row.

Thus, equation 4.3, which express the predicted state, can be solved in a matrix
model as listed below:

[

xk

ẋk

]

=

[

I3 dkI3

0 I3

] [

xk−1

ẋk−1

]

+ Buk−1 (4.8)

It is important here to remember that each marker position comprises x, y and
z coordinates. Assuming that B = 0 and dk = 1, matrix A which updates the

state can be expressed as A =

[

I3 I3

0 I3

]

.

4.3. Applying Constraints

In this section we will apply constraints to handle cases where the occlusion
occurs over a significant number of frames. To cope with such cases, the main
idea is to implement a tracker that uses information not only from the previous
frames, but also from the current position of neighbouring visible markers. The
rigid body has some important properties useful for the estimation of occluded
markers. The markers are located at strategic points on the articulated body and
have their inter-marker distances constant.

A very important parameter for the accurate operation of the Kalman filter is
the observation vector. The observation vector, Zk, gives the observed position
of the tracked marker when available, otherwise it represents estimated position.
We assume three markers on each limb. In the presence of noise the observation
vector is updated as given below for 5 different scenarios. These methods can
take care of cases where the velocity, the acceleration and/or the direction of the
non-visible marker is rapidly changing during the occlusion period.

4.3.1. All markers are visible on a given limb

Where all markers are visible on a given limb, then:

Zk = Hxk + vk (4.9)

where xk is the current state of a tracked marker on the limb. In this case H is
the identity and R is determined empirically. Many factors contribute to marker
noise, and hence R, including optical measurement noise, miscalibration of the
optical systems, reflection, motion of markers relative to the skin and motion of
the skin relative to the rigid body (underlying bone).
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4.3.2. One missing marker on a limb segment

In the case where two markers are visible on the limb,

Zk = Hx̂k
1 + vk (4.10)

where x̂k
1 is the estimated position of the occluded marker m1 in frame k. x̂k

1

can be calculated as given below. Firstly we calculate Dk−1
1,2 and Dk−1

1,3 which
correspond to the vectors between marker m1 and markers m2, m3 in frame k−1
respectively. These vectors are given by (see figure Fig 4.1):

Dk−1
i,j = xk−1

j − xk−1
i (4.11)

Thereafter, these vectors are rotated as

D̂k
i,j = Rk−2,k−1Dk−1

i,j R̃k−2,k−1 (4.12)

where Rp,q is the rotor for the rotation between frames p to q, assuming that the
rotation of the markers between two consecutive frames remains constant. One
obvious way to proceed is to calculate the point x̃k

1 which is an average of the
estimated positions in frame k using the D̂ vectors;

x̃k
1 =

(xk
2
−D̂k

1,2)+(xk
3
−D̂k

1,3)
2

(4.13)

where xk
i is the position of marker i in frame k. We now improve on this estimate

by finding the solution of the intersection of the two spheres in frame k with
centres xk

2, xk
3 and radii |D̂k

1,2| and |D̂k
1,3| respectively. x̂k

1 is assigned as the
closest point on the circle of intersection to x̃k

1. The solution to this problem is
given in [45]. Figure 4.1 illustrates this process.
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1,3

x̃k
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Figure 4.1.: The observation vector in the case of 2 visible markers. The red dot, x̃k
1 ,

represents the average value as given in equation 4.13. The green dot, x̂k
1 ,

is the point on the intersection of the 2 spheres which is closest to x̃k
1 .
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4.3.3. Two missing markers on a limb segment

In the case of only one marker (m2) visible on a given limb we again have;

Zk = Hx̂k
j + vk (4.14)

where x̂k
j is the estimated position of the occluded marker mj (j = 1, 3) in frame

k. x̂k
j is given by:

x̂k
j = xk

2 − D̂k
j,2 (4.15)

where xk
2 is the position of the visible marker m2 on the limb in the current frame

and D̂k
j,2 is as described above. In this case, we are using the constant velocity

assumption as we cannot estimate the rotation. In that case, it is assumed that
the rotation around the axis joining the two remaining markers on the limb does
not exist. Figure 4.2 demonstrates the above.
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1,2 xk−1

1

x
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k−1
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x̂k
1
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3

Frame k
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2

D̂k
1,2

D̂k
3,2

Figure 4.2.: The observation vector in the case of only one visible marker. The red
dots, x̂k

j , where j = {1, 3} represent the estimated position of the missing

marker mj as given in equation 4.15.

4.3.4. All markers on a limb segment are missing

When all markers on a limb are occluded, we consider two possible subcases; the
case where the other limb segment (as in figure 3.2) has some markers visible and
the case where both limb segments have all of their markers occluded. If some
markers on the other limb segment are visible, the missing marker positions can
be calculated using the CoR estimate, Ĉk, as calculated in section 3.4.2, equation
3.35. In that case the observation vector of the Kalman filter is updated as:

Zk = Hx̂k
j + vk (4.16)

where x̂k
j is the estimated position of the occluded marker mj (j = 1, 2, 3) in

frame k. x̂k
j is given by;

x̂k
j = Ĉk + D̂k

j,c (4.17)
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where D̂k
j,c is an estimate of the vector between marker mi and the CoR. This

approach takes advantage of the fact that the distance between markers and the
CoR is constant. This vector is approximated by D̂k

j,c = Rk−2,k−1Dk−1
j,c R̃k−2,k−1

where Dk−1
j,c = xk−1

j − Ck−1. This assumes that the rotation of the markers be-
tween two consecutive frames remains constant. Figure 4.3 illustrates the above.
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āy

D̂k
2,c

D̂k
1,c

D̂k
3,c

Frame k − 1 Frame k

Figure 4.3.: The estimation procedure when all markers on a single limb segment are
occluded. The red dots represents the estimated position of the CoR,
Ĉk = yk

i −Rk
y āyR̃

k
y where i = {1, 2, 3}, and the estimated marker positions

of the limb segment x, x̂k
j = Ĉk + D̂k

j,c, where j = {1, 2, 3}. āx and āy are

updated using the predicted marker positions in the current frame.

If both limb segments have all markers occluded, only information from pre-
vious frames is used. The observation vector, Zk, in this instance is calculated
using a quaternion based method. This method also assumes that the segment
rotation between two consecutive frames is constant. The observation vector is
now equal to

Zk = Hx̂k + vk (4.18)

where x̂k is equal to x̂k = Rk−2,k−1xk−1R̃k−2,k−1.
A different approach for estimating the missing markers when all markers are

occluded uses a constant velocity model. It is assumed that the velocity of the
occluded limb remains stable; thus the observation vector is formulated as:

Zk = Hxk−1
1 + Uk (4.19)
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where Ut is equal to Ut =
(xt−1

1
−x

t−2

1 )+(xt−1

1
−x̂

t−1

1 )
2

and x̂t−1
1 is the predicted state

using the Kalman filter on the previous frame. The xt−1
1 and xt−2

1 are the real
positions of the tracked marker in the previous frame and two frames ago, respec-
tively. However, this method is not as efficient as the constant rotor approach.
Using the constant rotor approach, we ensure that on each marker the same ro-
tation has been applied; thus, markers on the same limb will obey the rigid body
assumption. When the constant velocity method is used, each marker has its
own trajectory “violating” the skeletal model of the tracked limb. This has a
continuous addition of noise and hence, the calculated CoR has a bigger error.

4.3.5. Markers visible in only one camera

The motion capture system also provides us with additional information which
could be used for prediction of missing marker locations. Each marker can be
reconstructed by the motion capture system if it is visible in at least two cameras.
It is often the case that some markers are visible in only one camera. This
information identifies a line, L1, starting from the camera and passing through
the position of the missing marker. By relaxing the constraints that the inter-
marker distance is constant and accepting that the real position of the marker is
on the line L1, we may be able to obtain a more accurate estimate of the position
of the relevant marker. This position, x́k

1, corresponds to the projection from the
point x̂k

1 onto the line L1, as in figure 4.4. This is applicable for the cases in
which the motion capture system fully reconstructs one or two marker locations
and another marker is visible in just one camera. If a limb segment has only one
known and one partially visible marker, the system is more reliable when it first
predicts the partially visible marker and then the entirely occluded marker.

Camera

L1

Frame k

xk
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D̂k
1,2

xk
3

D̂k
1,3

x̂k
1

x́k
1

Figure 4.4.: The observation vector in the case of 2 visible markers and one marker
visible only by one camera. The magenta dot, x́k

1 , is now used for the
calculation of the observation vector, Zk = Hx́k + vk.

Next we present an alternative method for estimating the missing markers
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when the relevant marker is visible in one camera. In the case where two markers
are visible, instead of projecting x̂k

j onto the line L1, the missing marker, x́k
j , can

be estimated by finding the nearest point on the line L1 from the circle created
after the intersection of the two spheres. In the case where one marker is visible,
then the missing marker would be the point on line L1 having minimum distance
from sphere Σ2 where Σ2 has as its centre the position of the visible marker,
xk

2, and its radii is the distance |D̂k
j,2|, where mj is the missing marker. These

methods are presented in detail in [45]. One might suppose that these methods
will return more accurate results. However, using the information coming from
the rotated distance, D̂k

i,j, using the previous frame, helps us to locate a more
reliable position for the missing marker. By ignoring this information, even if
the estimated position meets all the conditions (the circle ensures inter-marker
constant distance and that the point will be on the line), the algorithm is not as
reliable as the methods proposed previously.



5
Filtering extension using

dynamic models and rotation
prediction

5.1. Dynamic Model for Target Tracking

5.1.1. Introduction

Most tracking problems require a dynamic model for accurate estimation of the
trajectory of a maneuverable object. The key for an efficient target tracking
algorithm is being able to extract information about the target’s state from the
observations. Most tracking algorithms are model based while knowledge of target
motion is available, observation data may be limited. Hence, instead of using a
constant velocity model, as in equation 4.8, for target tracking, it will be more
efficient if we use a more sophisticated model, which take accounts the velocity
and the acceleration of the target state.

During the last four decades various mathematical models of target motions
have been developed [46]. Singer, [47, 48] proposes a model which assumes
that the target acceleration is a zero-mean first-order stationary Markov pro-
cess. Based on Singer’s assumption, many papers have been proposed having a
constant or variable acceleration. For a more detailed overview on these types of
modelling methods, refer to [46].

31
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5.1.2. Dynamic State-Space Model

The general state-space model can be generally divided into two models, the state
transition model and the state measurement model

p(xt|xt−1) (5.1)

p(yt|xt) (5.2)

where xt ∈ R
nx denotes the states of the system at time t and yt ∈ R

ny the
observations. The states follow a first order Markov process and the observations
are assumed to be independent given the states. Therefore, the dynamic model
can be expressed as follows

xt = f(xt−1,vt−1) yt = h(ut,xt,nt) (5.3)

where, yt ∈ R
ny is the output observations, ut ∈ R

nu is the input observation,
xt ∈ R

nx is the state of the system, vt ∈ R
nv is the process noise and nt ∈ R

nn the
measurement noise. The mapping f : R

nx ×R
nv 7→ R

nx and h : R
nx ×R

nn 7→ R
ny

represent the deterministic process and measurement models.

5.1.3. Constant Turn Model

A simple and popular model used to track the motion of a target is the nearly
constant turn (NCT) model [46], which assumes that the target moves with nearly
constant speed and turn rate. The altitude changes are most often modeled
independently by a nearly constant velocity model (CV) or a random walk model
along the z direction, leading to an acceptable accuracy in practice.

It is easily proved that a constant speed (i.e ν̇ = 0) motion corresponds to
a · v = 0, where a is the target acceleration vector and v is the target velocity
vector and is described equivalently by

a = Ω × v (5.4)

where Ω is the angular velocity vector of the target and is equal to

Ω =
v × a

ν2
(5.5)

and ν = ‖v‖ is the target speed. Assuming Ω̇ = 0, it follows that

ȧ = Ω × a = Ω × (Ω × v) = (Ω · v)Ω− (Ω · Ω)v = −ω2v (5.6)

where the turn rate ω is given by

ω , ‖Ω‖ =
‖v × a‖

ν2
=

‖v‖ ‖a‖
ν2

=
a

ν
(5.7)



5.1 Dynamic Model for Target Tracking 33

Therefore, the NCT motion can be modeled by a second-order Markov process

ȧ = −ω2v + w (5.8)

where w is white noise.
In [46], it is proven that the target equations of the 3D discrete

motion of this model in the Cartesian coordinates with state xk =
[xk, ẋk, ẍk, yk, ẏk, ÿk, zk, żk, z̈k]

T may be represented by

xk = diag [Fx(ωx), Fy(ωy), Fz(ωz)]xk−1 + Buk−1 + wk−1 (5.9)

where Fi(ωi) for each component i = x, y, z is equal to:

Fi(ωi) =
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for i = x, y, z (5.10)

cov (wk−1) = diag [SxQx(ωx), SyQy(ωy), SzQz(ωz)] (5.11)

where Sx, Sy and Sz are the power spectral density of the white noise w of each
component x, y, z and Qi(ωi) for i = x, y, z is equal to

Qi(ωi) =
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(5.12)

The motions in the x, y, z directions in this model are coupled only through the
turn rate ωi. This model specifies a constant-turn motion defined by the velocity
and acceleration vectors of each component separately. For implementing such a
model, the ωi must be known. In some cases, ω can be computed using certain
techniques, as reported in [46].

5.1.4. Variable Turn Model

The above model was based on the constant-speed condition and the constant
turn-rate assumption which therefore restricts the variety of possible maneuvers.
In this section, a more sophisticated and more accurate model is examined which
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does not assume that markers have constant velocity and turn-rate. This is the
variable turn model (VTM). Figure 5.1 compares target prediction with variable
acceleration using the VTM model against a linear prediction.

Asseo and Ardila in [49] describe a general motion of a rigid body in space.
They show that, under the orthogonal velocity condition Ω ⊥ v (Ω is given by eq.
5.5), the target acceleration can be expressed as a second-order Markov process
with state dependence

ȧ = −2αa − (2α2 + ω2)v + w w =
d2v

dt2
+ Ω̇ × v (5.13)

where

ω , ‖Ω‖ =
‖v × a‖

ν2
α = −v · a

ν2
(5.14)

The target equations of the 3D discrete motion of the VTM model in Cartesian
coordinates with state xk = [xk, ẋk, ẍk, yk, ẏk, ÿk, zk, żk, z̈k]

T is now represented by

xk = diag [Fx(ωc,x, αx), Fy(ωc,y, αy), Fz(ωc,z, αz)]xk−1 + Buk−1 + wk−1

where Fi(ωc,i, αi) for each component i = x, y, z is given by:

Fi(ωc,i, αi) =
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and

Q = cov (wk−1) = diag [SxQx(ωc,x, αx), SyQy(ωc,y, αy), SzQz(ωc,z, αz)] (5.15)

where ω2
c,i = α2

i + ω2
i , Sx, Sy and Sz are the power spectral density of the white

noise w of each component x, y, z. Qi(ωc,i, αi) for i = x, y, z is given by:

q11 =
A + B + C

4αiω
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2
i + ω2

c,i)
3

A = e−2αiT [(α2
i − 3ω2
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i ω

2
c,i(4αiT − 11) + ω4
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(5.16)
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Figure 5.1.: Target prediction with variable acceleration using the VTM model com-
pared to the linear prediction.

A more detailed look at the marker data, indicates that the velocity noise
is huge due to the marker position noise. Many factors contribute to marker
position noise such as optical measurement noise, miscalibration of the optical
systems, reflection, motion of markers relative to the skin and motion of the skin
relative to the rigid body (underlying bone). As a result, the target acceleration is
mostly noise, having only little information related to that target motion. Hence,
the dynamic model proposed above becomes useless. In order to overcome this
problem, we applied a real-time median filter to the target velocity (see figure
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Figure 5.2.: (a) The noisy marker’s velocity and (b) the same velocity after filtering
using a median filter.

5.2). Having a smoothed velocity, the acceleration in eq. 5.14 can be calculated
with more accuracy and therefore, the proposed dynamic model can be used
without problems (see figure 5.3).

5.2. Unscented Transform

Kalman filtering has been extensively used for real time estimation of linear dy-
namic systems. However, the traditional Kalman filter is not suitable for use with
non-linear dynamical systems, even if Gaussian approximations to the joint dis-
tribution of state x and measurement y are made. The Extended Kalman Filter
(EKF) [50] is a minimum mean-square-error (MMSE) estimator which extends
the scope of the Kalman filter to nonlinear optimal filtering problems by forming
a Gaussian approximation to the joint distribution of state x and measurement
y using a Taylor series based transformation. Nevertheless, according to [51], the
EKF has a few serious drawbacks which should be considered when it is used.
An EKF implementation is complex (Jacobian and Hessian matrices with second
order filters), difficult to tune, and only reliable for systems that are almost linear
on the time scale of the updates. Most of these difficulties arise from its use of lin-
earisation. The EKF only uses the first order terms of the Taylor series expansion
of the nonlinear functions, hence it often introduces large errors in the estimated
statistics of the posterior distributions of the states. To overcome this limitation,
the unscented transformation (UT) was developed by Julier and Uhlmann [52]
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Figure 5.3.: (a) The acceleration using the noisy marker’s velocity and (b) the same
acceleration using the filtered velocity.

as a method to propagate mean and covariance information through nonlinear
transformations. The UT is more accurate, easier to implement, and uses the
same order of calculations as linearisation.

5.2.1. Unscaled Unscented Transform

The Unscented Transform can be used for forming a Gaussian approximation to
the joint distribution of random variables x and y. UT deterministically chooses
a fixed number of ‘sigma points’, which capture the desired moments (mean and
covariance) of the original distribution of x (details about sigma points can be
found later). After that, it propagates the sigma points through the non-linear
function g and estimates the moments of the transformed variable from them.
The UT has the advantage of capturing the higher order moments caused by the
non-linear transform and is less complex compared to the EKF since the Jacobian
and Hessian matrices are not needed. Also, the predictions made by the family of
UTs are less error-prone compared to any other real-time prediction algorithm.

The unscented transformation (UT) is a method for calculating the statistics
of a random variable which undergoes a nonlinear transformation and builds on
the principle that it is easier to approximate a probability distribution than an
arbitrary nonlinear function [52]. Consider propagating a nx-dimensional random
variable x through an arbitrary nonlinear function g : Rnx 7→ R

ny to generate y,

y = g (x) (5.17)
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Assume x has mean x̄ and covariance Px. To calculate the statistics (first two
moments) of y using the UT, we proceed as follows: First, a set of 2nx+1 weighted
samples or sigma points Si = {Wi,Xi} are deterministically chosen so that they
completely capture the true mean and covariance of the random variable x. A
selection scheme that satisfies this requirement is

X0 = x̄ W0 = κ/ (nx + κ) i = 0

Xi = x̄ +
(

√

(nx + κ)Px

)

i
Wi = 1/ {2 (nx + κ)} i = 1, ..., nx (5.18)

Xi = x̄ −
(

√

(nx + κ)Px

)

i
Wi = 1/ {2 (nx + κ)} i = nx + 1, ..., 2nx

where κ is a scaling parameter and
(

√

(nx + κ)Px

)

i
is the ith row or column of

the matrix square root of (nx + κ)Px. Wi is the weight associated with the ith
point such that

∑2nx

i=0 Wi = 1. Each sigma point is now propagated through the
nonlinear function

Yi = g (Xi) i = 0, ..., 2nx (5.19)

and the estimated mean and covariance of y are computed as follows

ȳ =
2nx
∑

i=0

WiYi (5.20)

Py =

2nx
∑

i=0

Wi (Yi − ȳ) (Yi − ȳ)T (5.21)

These estimates of the mean and covariance are accurate to the second order
(third order for Gaussian priors) of the Taylor series expansion of g(x) for any
nonlinear function. Errors are introduced in the third and higher order moments
but are scaled by the choice of the parameter κ. In comparison, the EKF only
calculates the posterior mean and covariance accurately to the first order with
all higher order moments truncated. For a detailed proof of this, see [53].

The sigma point selection scheme used in the UT has the property that as the
dimension of the state-space increases, the radius of the sphere that bounds all
the sigma points increases as well. Even though the mean and covariance of the
prior distribution are still captured correctly, it does so at the cost of sampling
non-local effects. If the nonlinearities in question are very severe, this can lead
to significant difficulties. In order to address this problem, the sigma points can
be scaled towards or away from the mean of the prior distribution by a proper
choice of κ. The distance of the ith sigma point from x̄, |Xi − x̄|, is proportional
to
√

(nx + κ). When κ = 0, the distance is proportional to
√

nx. When κ > 0
the points are scaled further from x̄ and when κ < 0 the points are scaled towards
x̄. For the special case of κ = 3 − nx, the desired dimensional scaling invariance
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is achieved by canceling the effect of nx. However, when κ = 3− nx < 0 and the
weight W0 < 0, the calculated covariance can be non-positive semi-definite. The
scaled unscented transformation was developed to address this problem [54].

5.2.2. Scaled Unscented Transform

The scaled unscented transformation (SUT) replaces the original set of sigma
points with a transformed set given by

X ′
i = X0 + α (Xi − X0) i = 0, ..., 2nx (5.22)

where α is a positive scaling parameter which can be made arbitrarily small to
minimise higher order effects. This formulation gives an extra degree of freedom
to control the scaling of the sigma points without causing the resulting covariance
to possibly become non-positive semidefinite. This is achieved by applying the
UT to an auxiliary random variable propagation problem which is related to the
original nonlinear model of equation 5.17 by:

z = g′(x) =
g [x̄ + α(x − x̄)] − g(x̄)

α2
+ g(x̄) (5.23)

The Taylor series expansion of z and Pz agrees with that of y and Py exactly
up to the second order, with the higher order terms scaling geometrically with
a common ratio of α. The same second order accuracy of the normal UT is
thus retained with a controllable scaling of the higher order errors by a proper
choice of α. The auxiliary random variable formulation of the SUT is identical to
applying the original UT on a pre-scaled set of sigma points [54]. A set of sigma
points S = {W,X} is calculated using equation 5.18 and then transformed into
the scaled set S ′ = {W′,X ′} by

X ′
i = X0 + α(Xi − X0)

W ′
i =

{

W0/α
2 + (1 − 1/α2), i = 0

Wi/α
2, i 6= 0

(5.24)

where α is the new sigma point scaling parameter. The sigma point selection and
scaling can also be combined into a single step (thereby reducing the number of
calculations) by setting

λ = α2(nx + κ) − nx (5.25)
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and selecting the sigma point set by:

X0 = x̄ i = 0

Xi = x̄ +
(

√

(nx + λ)Px

)

i
i = 1, ..., nx

Xi = x̄−
(

√

(nx + λ)Px

)

i
i = nx + 1, ..., 2nx

W
(m)
0 = λ/ (nx + λ) i = 0

W
(c)
0 = λ/ (nx + λ) + (1 − α2 + β) i = 0

W
(m)
i = W

(c)
i = 1/ {2 (nx + λ)} i = 1, ..., 2nx (5.26)

The weighting on the 0th sigma point directly affects the magnitude of the errors
in the fourth and higher order terms for symmetric prior distributions ([54]).
A third parameter, β, is thus introduced which affects the weighting of the 0th
sigma point for the calculation of the covariance. This allows for the minimisation
of higher order errors if prior knowledge (i.e. kurtosis, etc.) of the distribution
of x is available.

The complete scaled unscented transformation is thus given as follow:

1. Choose the parameters κ, α and β. Choose κ ≥ 0 to guarantee positive
semidefiniteness of the covariance matrix. The specific value of κ is not
critical though, so a good default choice is κ = 0. Choose 0 ≤ α ≤ 1 and
β ≥ 0. α controls the size of the sigma point distribution and should ideally
be a small number to avoid sampling non-local effects when the nonlinear-
ities are strong. β is a non-negative weighting term which can be used to
incorporate knowledge of the higher order moments of the distribution. For
a Gaussian prior the optimal choice is β = 2. This parameter can also be
used to control the error in the kurtosis which affects the ‘heaviness’ of the
tails of the posterior distribution.

2. Calculate the set of 2nx + 1 scaled sigma points and weights S = {W,X}
by setting λ = α2(nx + κ) − nx and using the combined selection/scaling
scheme of equation 5.26. As mentioned earlier, nx is the dimension of x.

3. Propagate each sigma point through the nonlinear transformation

Yi = g (Xi) i = 0, ..., 2nx (5.27)

4. The mean ȳ and covariance Py are computed as follows

ȳ =

2nx
∑

i=0

W
(m)
i Yi (5.28)

Py =

2nx
∑

i=0

W
(c)
i (Yi − ȳ) (Yi − ȳ)T (5.29)
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5.2.3. Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is a straightforward application of the scaled
unscented transformation to recursive minimum mean-square-error (RMMSE) es-
timation [55], where the state random variable (RV) is redefined as the concate-
nation of the original state and noise variables at time k: xα

k = [xT
k vT

k nT
k ]. The

SUT sigma point selection scheme is applied to this new augmented state RV
to calculate the corresponding sigma matrix, X α

k . The complete UKF algorithm
that updates the mean x̄ and covariance P of the Gaussian approximation to the
posterior distribution of the states is given by:

1. Initialise with:

x̄0 = E[x0]

P0 = E[(x0 − x̄0) (x0 − x̄0)
T ] (5.30)

x̄α
0 = E[xα] = [xT

0 0 0]T

Pα
0 = E[(xα

0 − x̄α
0 ) (xα

0 − x̄α
0 )T ] =





P0 0 0
1 Q 0
1 0 R





2. For k ∈ {1, ...,∞} then:

a) Calculate sigma points:

X a
k−1 =

[

x̄α
k−1 x̄α

k−1 ±
√

(nα + λ) + Pα
k−1

]

(5.31)

b) Time update:

X x
k|k−1 = f

(

X x
k−1,X ν

k−1

)

x̄k|k−1 =

2na
∑

i=0

W
(m)
i X x

i,k|k−1

Pk|k−1 =

2na
∑

i=0

W
(c)
i [X x

i,k|k−1 − x̄k|k−1][X x
i,k|k−1 − x̄k|k−1]

T (5.32)

Zk|k−1 = h
(

X x
k|k−1,X n

k−1

)

z̄k|k−1 =

2na
∑

i=0

W
(m)
i Zx

i,k|k−1
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c) Measurement update equations:

Pz̃k z̃k
=

2na
∑

i=0

W
(c)
i [Zi,k|k−1 − z̄k|k−1][Zi,k|k−1 − z̄k|k−1]

T

Pxkzk
=

2na
∑

i=0

W
(c)
i [Xi,k|k−1 − x̄k|k−1][Zi,k|k−1 − z̄k|k−1]

T

Kk = Pxkyk
P−1

ỹkỹk
(5.33)

x̄k = x̄k|k−1 + Kk(Zk − z̄k|k−1)

Pk = Pk|k−1 −KkPz̃kz̃k
KT

k

where, xα = [xT vT nT ]T , X α = [(X x)T (X ν)T (X n)T ]T , λ is the composite
scaling parameter, nα = nx + nν + nn, Q is the process noise covariance,
R is the measurement noise covariance, K is the Kalman gain, Wi are the
weights as calculated in equation 5.26 and Zk is the observation state.

Note that no explicit calculation of Jacobians or Hessians are necessary to
implement this algorithm. The UKF requires computation of a matrix square
root which can be implemented directly using a Cholesky factorization.

The transition function f(.) and the observation function h(.) are very im-
portant for implementing efficient UKF filtering. In this model the transition
function is supposed to be a variable turn model (VTM) as described in section
5.1.4 with target velocity and acceleration the velocity and acceleration of the
relevant marker. On the other hand, for the observation function we used a sim-
ple model which assumes that the rotation between two consecutive frames is
constant. Thus, Zk|k−1 in equation 5.32 will be equal to

Zk|k−1 = Rk−2,k−1X x
k|k−1R̃

k−2,k−1 (5.34)

It is important at this point to remember that the rotation between the previous
and the current frame is re-calculated every time just after the marker prediction
using the estimated marker positions.

In the same order as in the simple Kalman Filter, similar marker constraints
can be applied. Hence, the observation vector, Zk, can be calculated using the
same methodology as in section 4.3.

5.3. Rotation Prediction

During the Kalman and Unscented Kalman filtering, when the constraints on
the observation state have been applied, we assumed that the rotation between
the previous and the current frame remains constant (see section 4.3). This
actually adds a small error in the prediction state; the error is small because Rk
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is re-calculated and updated just after the marker prediction using the estimated
positions. Nevertheless, a likely methodology of rotation prediction will be useful
for further reduction of the marker positioning error. In this application we are
considering real-time operations hence, we require real-time predictions. The
limited data information and the absence of a suitable predicting model limit our
choices for real-time predictions.

5.3.1. Extrapolation

A likely real-time methodology for rotor prediction is rotor extrapolation. In
order to be able to implement such a system, a more detailed view of the rotor
R is needed. The rotor R is defined as

R = eB = cos |B| + sin |B|
|B| B (5.35)

where B = B1(e2e3) + B2(e3e1) + B3(e1e2); e1, e2, e3 are the orthonormal basis
vectors and |B| =

√

B2
1 + B2

2 + B2
3 . Let B = [B1, B2, B3], where Bi for i = 1, 2, 3

are the bivector coefficients, and B′ = B/sinc|B| so that B′ = [B′
1, B

′
2, B

′
3] where

B′
i = Bi/sinc|B| are the bivector components. In Geometric Algebra these can

be expressed as

R =
[

α 0 0 0 B1 B2 B3 0
]

=
[

cos |B| 0 0 0 sinc|B|B′
1 sinc|B|B′

2 sinc|B|B′
3 0

]

(5.36)

Looking at the structure of the rotor (eq. 5.36), as it is expressed in GA,
|B| = acos(α). The bivector components can then be easily calculated as

B′ =
B

sinc|B| (5.37)

More information regarding rotors and Geometric Algebra can be found in [15,
45].

Assume that we want to estimate the rotor at time s = 1, having the rotors at
time steps s = 0, 1/3, 2/3 (see figure 5.4). An extrapolating approach which can
calculate an estimate of each time step, according to a reference rotor R0 (time
s = 0) is given below.

Rs = eb0s2+b1sR0 (5.38)

hence

eb0s2+b1s = RsR̃0 (5.39)
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R0

R1/3

R2/3

R1

Figure 5.4.: The rotor trajectory over time.

Let Rk = RsR̃0, where k = s and B′
k are the bivector components of the rotor

Rk. Thus,

b0s
2 + b1s = B′

k (5.40)

for

s = 1/3,
b0

9
+

b1

3
= B′

1/3

s = 2/3,
4b0

9
+

2b1

3
= B′

2/3

s = 1, b0 + b1 = B′
1

It can be easily proved that

b0 =
9B′

2/3

2
− 9B′

1/3

b1 = 6B′
1/3 −

3B′
2/3

2

Finally, the estimated current rotor (at time step s = 1) can be calculated by
rotating the reference rotor R0 by eb0+b1 as given in the equation below.

R1 = eb0+b1R0 (5.41)

5.3.2. Prediction Filtering

An alternative approach for solving the problem of rotor predictions could be the
use of Kalman filtering. Having a more detailed study of the rotor’s elements,
we observed that in order to estimate the rotor, the trajectory of 4 elements
(1 scalar and 3 bivectors) should be tracked. Since small changes in scalar, a,
produce large changes in the resultant rotor, the KF should not be used to track
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the scalar (see figure 5.5). On the contrary, the bivector components of the rotor
have more constant and smoothed values. Looking at figure 5.6, it is easily seen
that the bivector components are more predictable, having similar motion shape-
trajectories as the marker positions; hence they can be predicted in the same
way. Taking this into consideration, it is reasonable to implement a Kalman
filter, similar to the one proposed in section 4.2, which will be able to estimate
the future values of the rotor R over time.
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Figure 5.5.: (a) The rotor trajectory and (b) the rotation between two consecutive
frames over time.
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Figure 5.6.: (a) The marker’s and (b) the Bivector components’ trajectories over time.

First, we have to calculate the bivector components, as shown in equa-
tion 5.37, which will be the input state of the KF. The state xk is equal to

xk =
[

B′
1,k, Ḃ

′
1,k, B̈

′
1,k, B

′
2,k, Ḃ

′
2,k, B̈

′
2,k, B

′
3,k, Ḃ

′
3,k, B̈

′
3,k

]

, where B′
i is the value of

the bivector component i = 1, 2, 3, Ḃ′
i is its velocity and B̈′

i its acceleration. The
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transition function could be a variable turn model (VTM) such as the proposed
model in section 5.1.4.

The observation state Zk of the system is the rotor that expresses the rotation
between the frame in time k− 2 and k− 1. It is important at this point to recall
that the rotation between the previous and the current frame is re-calculated
every time just after the marker prediction using the estimated marker positions.
Also, remember that at the end of each prediction, the rotor should be normalised
in order to again be a valid1 rotor.

1a rotor R is valid when RR̃ = 1, and R̃ is the quaternion conjugate of R
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Results

6.1. The Experimental Environment

Experiments were carried out using a 16 camera Phasespace motion capture sys-
tem capable of capturing data at 480Hz [16]. The algorithms were implemented
in MATLAB and run on a Pentium IV PC. The system, proposed in Chapter
4, can process up to 350 limb segment pairs per second (using MATLAB). Our
datasets comprise both simulated and real data (i.e. captured data with natu-
ral occlusions or occlusions generated by artificial deletion) with more than 5000
frames in each.

During capture, markers must be carefully placed on the body in order to ob-
tain good results. Results using markers placed too close to the CoR are more
susceptible to errors since a small error may cause large deviations in the esti-
mated rotation and hence lead to erroneous calculation of the model parameters.
There are two types of data in our experiments: one consists of 7 segment leg
datasets and the other of 5 segment arm datasets. In each case, the motion of
the body was studied for a certain number of frames, ensuring rotation occurred
at each joint.

6.2. Results

In this section, our experimental results will be presented. The results are sep-
arated into two sections. This section presents and discusses the results of the

47
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methodology analysed in Chapter 4. Section 6.3 presents, analyses and compares
the results between the methodology in Chapter 4 and its filtering extensions in
Chapter 5.

Using real data with occlusions generated by artificial deletion, we calculated
the error of the proposed methodologies under real conditions; the error is given
by the average distance between the true position and the estimated position
(marker and the CoR). The error varies between different instances of marker oc-
clusion. As more markers become available, more information relative to the limb
segment is available and thus, the more accuracy we achieve. In the following,
we will assume that each limb has 3 markers.

6.2.1. One missing marker on a limb segment

The most common case is when a single marker is missing; this subsection dis-
cusses the results of skeletal reconstruction for the case of one occluded marker.
When one marker is missing, information from the current position of neighbour-
ing visible markers is used to estimate the position of the missing marker. Marker
positions are estimated with high accuracy, differing from the true position by
an average (over 20 runs) of 2.6mm. The CoR is calculated using three differ-
ent approaches; the first calculates the CoR location using the predicted marker
positions, the second calculates the CoR using only information about the limb
segment on which all markers are visible with āw updated using the predicted
data and the third calculates the CoR using information from the limb segment
on which all markers are visible but uses the last available āw (āw is not updated
and it is assumed that it remains constant over time; see section 3.4 for more
details). Table 6.1 lists the average results for the case where one marker on a
limb segment is missing. Obviously, the best results are obtained where the CoR
location is calculated using the information from the limb segment with all its
markers visible. Thus, the CoR is updated from information from the limb with
all markers visible but we note that āw is updated using the predicted positions
of the markers.

6.2.2. Two missing markers on a limb segment

When two markers on a limb segment are missing then information from the
remaining visible neighbouring marker is used. We take advantage of the fact that
markers have approximately constant inter-marker distance and apply constraints
to ensure that this fact will always be satisfied. The average distance between
the true and the estimated marker positions for the case where two markers are
missing is approximately 6.5mm; while the difference in the CoR location between
the true and the estimated position is less than 1cm. Table 6.2 shows the average
results for this case. Again, the lowest error is seen when the CoR location is
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Table 6.1.: Average results (over 20 runs) on real data with occlusions generated by
deletions. Case of one missing marker on a limb segment for more than
1500 frames.

The error when one missing marker is
entirely occluded

Error (mm)
Marker position 2.584124
CoR (using the predicted marker positions) 7.044406
CoR (when āw is updated using the predicted data.) 5.905546
CoR (when āw is not updated using the predicted data.) 6.742417

calculated using data from the limb segment which has all its markers visible and
āw is updated using the predicted marker positions.

Table 6.2.: Average results (over 10 runs) on real data with occlusions generated by
deletions. Case of two missing markers on a limb segment for more than
1500 frames.

The error when 2 missing markers are
entirely occluded

Error (mm)
Marker position 6.549751
CoR (using the predicted markers positions) 12.587746
CoR (when āw is updated using the predicted data.) 9.544872
CoR (when āw is not updated using the predicted data.) 10.809371

6.2.3. All markers on a limb segment are missing

When all markers on a limb segment are occluded, the marker positions and the
CoR can be estimated using two different but related approaches utilising the
available marker locations on the other limb segment. If some markers on the
other limb segment are visible, the missing marker positions can be calculated
using the CoR estimate, Ĉk, as proposed in section 4.3.4. The error between
the true and estimated marker positions for this case is less than 2cm, whereas
the difference between the true and estimated CoR location is approximately
1.2cm. These results are presented in table 6.3. It is also observed that when the
predicted marker positions are used to update āw, the noise added to the system
is more than that introduced by just using the last available position values,



50 Results

thereby increasing the error.
On the other hand, if both limb segments have all their markers occluded, only

information from previous frames may be used. Hence, if markers are occluded
for extended time periods during which rapid changes in direction or/and velocity
occur, the predictor fails to provide a useful estimate of the position of missing
markers or the reconstructed CoR location. The average error for that case is
more than 10cm for marker positions and almost 3cm for the CoR.

Table 6.3.: Average results (over 20 runs) on real data with occlusions generated by
deletions. Case where all markers on a limb segment are missing for more
than 1500 frames and some markers on the other limb segment are visible.

The error when 3 missing markers are
entirely occluded

Error (mm)
Marker position 19.452111
CoR (when āw is updated using the predicted data.) 17.854712
CoR (when āw is not updated using the predicted data.) 12.105377

Looking carefully at the results, it is clear that the Kalman filter gives reason-
able estimates except where all markers on a limb are occluded. In that case,
the system fails because the observation vector is calculated using approaches
based only on previous frames. In the first approach the algorithm assumes that
the velocity of the occluded markers remains stable over time, whereas in the
second approach it assumes that the rotation between two neighbouring frames
will not be changed. Figure 6.1 shows how the marker position errors using the
Kalman filter for both constant velocity and constant rotation models compare
for different numbers of missing markers. It is obvious that the error increases
dramatically in the case where 3 markers on the same limb are non-visible; how-
ever, when the constant rotation approach is used, the estimated positions of the
missing markers have less error from the true position in comparison with using a
constant velocity model. This is because use of the constant rotor approach will
ensure all markers have been rotated using the same rotor, thus, markers will not
follow inconsistent trajectories. Alternatively, when a constant velocity model is
used, each marker can have its own trajectory “violating” the skeletal model of
the tracked limb.

6.2.4. Markers visible by one camera

Looking at numerous real datasets, we have observed a high probability that a
missing marker is visible in one camera. Most of the time, when a marker is not
located by the MoCap system it is not entirely missing, information about its
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Figure 6.1.: The Kalman filter error using the constant velocity and the rotors ap-
proaches, against the number of occluded markers on each limb segment.
For example, 2 + 1 means 2 occluded markers on the first limb segment
and 1 occluded marker on the second.

position is often returned by a single camera. This information identifies a line
starting from the camera and passing through the position of the occluded marker.
Hence, by relaxing the constraints that the inter-marker distances are constant
and accepting that the real position of the marker is on the line returned by
the camera, we might obtain a more reliable position estimate. Using the model
proposed in section 4.3.5, we observe that the results are much more accurate
than for the case where this information has been ignored. Table 6.4 lists the
average results (over 10 runs) in the case of one missing marker on each limb
segment. Table 6.5 presents the results when only one marker is fully visible and
two markers are partially visible in one camera, while table 6.6 shows the results
when one marker is fully visible, one marker is partially visible in one camera and
one marker is entirely missing. The error is reduced by more than 70% in the first
case and almost 40% in the second case compared with the corresponding cases
when this information is not used. Another important observation is that, if a
limb segment has only one known and one partially visible marker, the system
is more reliable when it first predicts the partially visible marker and then the
entirely occluded marker. The reason for this is obvious. If we first predict
the position of the entirely missing marker, the position of the partially visible
marker will be calculated having introduced another noise element compared to
the reverse case. This happens because our algorithm predicts a missing marker
more accurately when some information about its position is available.

Figures 6.2 show examples of the output of the proposed algorithms on real
data; it is the lower body of a female as she runs. These illustrative examples
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Table 6.4.: Average results (over 10 runs) on real data with occlusions generated by
deletions. Case of one missing marker on each limb segment for more than
1500 frames.

The error when missing markers are
visible by one camera

Error (mm)
Marker position 0.585351
CoR (using the predicted 1.281958
markers positions)

Table 6.5.: Average results (over 10 runs) on real data with occlusions generated by
deletion. Case of one visible and two partially visible markers on one limb
segment. Both markers are missing for more than 1500 frames.

The error when missing markers are
visible by one camera

Error (mm)
Marker position 1.973166
CoR (using the predicted 2.571261
markers positions)

show that the proposed method can estimate the position of the occluded markers
and locate the joint parameters in real-time with high accuracy.

Figure 6.3 shows an example of the true and predicted positions of an occluded
marker and the CoR for the case of a single occlusion and the case of a missing
marker visible by one camera, respectively. Its clear that the occluded marker
can be tracked with high accuracy when it is visible in a camera and its CoR
position can be reconstructed efficiently even if the occlusion period exceeds 1500
frames. Figure 6.4 also shows an example of the error variation over time due to
occlusion for the case of 2 missing markers. The error after the occlusion is not
set to zero because the rotor R1,k expressing the rotation between the first and
the current frame, is an estimation using the predicted markers positions. Hence,
even if all the markers are now available, this rotor will still be an estimation.
The position of the CoR is based on that rotor (see equation 3.33), and hence
is also an estimation of the true position. However, the error of the CoR is
reduced during time (when all markers are visible) because the new positions of
the markers give a more accurate estimation of the rotor.
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Table 6.6.: Average results (over 10 runs) on real data with occlusions generated by
deletion. Case of one entirely missing marker, one partially visible marker
and one visible marker on one limb segment. Both markers are occluded
for more than 1500 frames.

The error when missing markers are
visible by one camera

Error (mm)
Marker position 3.498871
CoR (using the predicted 8.369646
markers positions)

6.3. The filtering extended methodologies

In this section we compare and discuss the results of the methodology presented
in Chapter 4 and its filtering extension in Chapter 5. The first step of the
filtering extension was to find a more reliable dynamic model for the Kalman
filtering. Therefore, we implemented a variable turn model (VTM) which uses
the velocity and acceleration of the x, y, z components of each individual marker.
Using this sophisticated dynamic model, we took into consideration any changes
in the velocity, direction or acceleration of the markers’ trajectories. Using a
VTM model, we reduced the error between the real and the estimated position
of the markers by 1.3% on average when 1 marker is missing compared to the
simple constant velocity (CV) model. However, we also observe a 12% increase in
processing time. This small time addition does not affect our target for real-time
implementation because we can still process approximately 305 limb segment
pairs per second. On the other hand, when 2 or 3 markers are missing there
is an average error increase of 15% and 5% respectively. At the moment it is
unclear why VTM model increase the error; it seems that, the most reasonable
explanation is that, if two or more markers on a limb segment are not visible, the
additional noise introduced to the system is bigger. These results are presented
in table 6.7.

A further reduction of the error was achieved when the unscented transforma-
tion was implemented through Kalman filtering. Such a model is necessary to
process nonlinear systems, like those studied here. The UKF reduced the error
by 7.9% when 1 marker is missing, 1.71% when 2 markers are missing and 0.23%
when all markers are missing, providing more accurate marker position estimates.
An important observation of using a UKF in such systems is that the processing
time could be a drawback of this methodology, in this case increasing the pro-
cessing time by 20% (see table 6.9). However, even under these conditions it is
possible to achieve the target of real-time application. Table 6.8 lists the aver-



54 Results

Table 6.7.: The average error and its % reduction using a VTM instead of a CV model.

Comparison of the results before and after
the VTM filtering

Marker’s Error (mm) Change CoR’s∗ Error (mm) Change
One marker† 2.5464 -1.3% 6.9214 -1.75%
Two markers† 7.5129 +15.0% 15.1052 +20.0%
All markers† 20.4520 +5.14% 18.0335 +1.00%

∗ The CoR is calculated using the predicted marker positions.
† Missing markers are entirely occluded.

age error and the % reduction using the proposed UKF (with a VTM transition
function) instead of the KF (with a constant velocity model) for the case of one
missing marker, two missing markers and all the markers occluded.

Table 6.8.: The average error and its % reduction using a UKF (with VTM) instead
of a KF (with CV).

Comparison of the results before and after
the UKF filtering

Marker’s Error (mm) Change CoR’s∗ Error (mm) Change
One marker† 2.3741 -7.90% 6.0440 -14.20%
Two markers† 6.4377 -1.71% 12.3120 -2.19%
All markers† 19.4012 -0.23% 17.7752 -0.59%

∗ The CoR is calculated using the predicted marker positions.
† Missing markers are entirely occluded.

Having a more detailed look at the results, we observe that the UKF performs
better in cases where the estimation error of the KF is big. The estimation error
is equal to e =

√

(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2, where e is the error, x,y, z are
the coordinates of the true positions of the marker and x̂, ŷ, ẑ are the coordi-
nates of the estimated positions. For example, when the positioning error of the
marker using the KF model is less than 3.5mm, the reduction achieved using the
UKF approach is approximately 1.5%. On the contrary, when the error is greater
than 3.5mm from the true position, the UKF performs better, achieving an error
reduction of 10%. Figure 6.5 reinforces the above showing the cumulative distri-
bution function (CDF) of the estimation error for the case of one missing marker
on each limb segment. The x−axis shows the estimation error and the y−axis
shows the probability, for y = a, of having an error less than or equal to a. Hence,
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for example, the probability the estimation error is less that or equal to 3mm is
approximately 0.47 for the KF and VTM, while it is 0.68 for the case of the UKF.
From figure 6.5, we see that the median estimation error of the markers for the
cases of the KF and VTM is approximately 3.17 (6.48 for the CoR), where the
corresponding median error for the case of the UKF is approximately 2.35 (5.05
for the CoR).

The last proposed extension was the rotor prediction method. A rotor expresses
the rotation between a reference frame and the current frame of a limb segment.
In section 4.3 we assumed that the rotation between two consecutive frames
remains constant. In order to overcome this assumption, we proposed two possible
methods of rotor prediction. However, both extrapolation and filtering prediction
of the rotors do not offer any error reduction. Even though the rotor prediction
works reasonably using the Kalman theory, the 50% addition of processing time
remains a big drawback. Since that the rotor is re-calculated in each frame using
the predicted positions of the markers, any rotor estimation will result in high
processing time.

Table 6.9 presents the average results of each extended algorithm with the
required processing time compared to the proposed KF methodology.

Table 6.9.: Average results after implementing the extension over the proposed
methodology.

Comparison of the results before and after the filtering
extension. Case of 1 missing marker on a limb segment.

Markers Error CoR Error Proc. time
Variable Turn Model (VTM) -1.31% -1.02% +12%
Unscented kalman Filter (UKF) -7.90% -14.20% +20%
Rotor Prediction - Extrapolation +0.15% +0.094% +3%
Rotor Prediction - Kalman filtering -0.075% -0.05% +50%

6.4. Discussion

The work outlined in this Chapter investigates reconstruction of marker position
for multiple cases of occlusion. The 3D location of the markers can be reliably
reconstructed even when a single marker occlusion exists for more than 1000
frames at a time, returning mean position errors of less than 3.5mm. The position
of the CoR using the predicted marker positions can be calculated with a mean
error of approximately 6.35mm in cases where one marker on each limb segment
is entirely occluded, this increases to 11.8mm in cases where 2 out of 3 markers
on a limb are not visible. However, in the case where one of the limb segments



56 Results

has all its markers available, the CoR can be calculated with higher accuracy
using information only from that limb segment, as in equation 3.35, where āw

is now updated using the predicted positions of the markers. The error between
the true CoR location and the estimate for that instance is 5.9mm when one
marker is occluded and 9.5mm when two markers are missing. This error is
significantly decreased to 0.6mm for marker position estimates and 1.3mm for
the CoR position estimates in the case where the missing markers are visible by
one camera. These results can only be compared with post-processing methods.
Most of the previously proposed missing marker replacement algorithms used
within motion capture systems are post-processing algorithms, thus limiting their
application. In this work, the methods proposed are for real-time applications
ensuring continuous data-flow.

The main advantages of the methods proposed are that the marker positions
can be calculated in real-time using an integrated framework (Kalman filter) in
combination with inferred information from the neighbouring visible markers.
Taking advantage of the fact that the inter-marker distances are approximately
constant and where possible, visibility of markers in a single camera, an efficient
method for estimating the missing markers and reconstructing the CoR is pre-
sented. However, one drawback of this work is the inevitable failure of the missing
marker position predictions when all markers are non-visible, thereby leading to
erroneous estimation of the CoR.

Certain drawbacks of the proposed methodology can be decreased using more
evolved and sophisticated methods during the Kalman Filter implementation.
The use of a variable turn model (VTM), instead of a simple constant velocity
model, can give significant improvements in cases where the trajectories of the
markers are variable and have abrupt fluctuations in speed and direction. A
parallel use of the unscented transformation and the VTM, as proven in our
experiments, can reduce the error by 7.90% in the case of one missing marker,
1.71% when 2 markers are missing and 0.23% when all markers are occluded.
This also effects the estimation of the CoR with a 14.2% decrease in the case of
one marker, 2.19% decrease in the case of two markers and 0.59% decrease in the
case where all markers are not visible to the cameras.

The use of a rotor predictor, instead of assuming that the rotation between two
consecutive frames remains constant, does not decrease the error as might have
been expected. On the contrary, the processing time of such filtering is high and
jeopardizes the target of real-time application.

Experiments demonstrate that the proposed method and its extensions effec-
tively recovers, in real-time, good estimates of the true positions of the missing
markers and reconstructs the CoR locations under multiple occlusions even if
markers are not visible for extended periods of time. Some of these results have
been published in [56], and [57].
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Figure 6.2.: Examples of implementation on real data (Lower body). On the left side
of the picture there are some markers which are missing; on the right side
of the image these markers have been correctly estimated.
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Figure 6.3.: An example of the predicted 3D positions and the true coordinates of the
Markers in the case (a) of one missing marker on a limb segment and (b) a
missing marker visible by one camera. (c) and (d) show the predicted 3D
positions of the CoR under the same conditions. The occlusion periods
are between frames 1000-2000 and 3000-3600.
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Figure 6.4.: The error between the predicted and the true positions of the (a)
Markers and (b) CoR respectively during the occlusion period.
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Figure 6.5.: The CDF of the estimation error (a) of the markers and (b) of the CoR
for the case of one missing marker on each limb segment.



7
Conclusions and Future Work

This report concerns algorithms related to the problem of using marker-based
optical motion capture data to automatically establish a skeleton model to which
the markers are attached. It is divided into three sections; the first section
describes the mathematical and experimental framework including the cameras
used for the experiments, the association between the markers and the limbs, and
the clustering of marker data into groups corresponding to the limb segments to
which they are attached. Section 2 considers the problem of fitting skeletal models
to marker-based optical motion capture data. Using the well known Procrustes
formulation, it shows how to establish estimates of the relative orientation of a
limb in each frame relative to a reference frame. Thereafter, it estimates the
joint location and identifies the optimal skeleton in real-time. The implemented
method takes advantage of the approximation that all markers on a segment are
attached to a rigid body, acquiring the skeleton model from a stream of motion
capture data. This allows a closed form sequential algorithm for estimating the
centre of rotation of a skeletal model in real time. However, this algorithm
neglects frames containing missing markers.

A common phenomenon during motion capture, even with many cameras, is
marker occlusion by elements of the scene, leading to missing data. In order
to unambiguously establish the marker position, each marker must be visible to
at least two cameras in each frame. The third section of this report presents
a prediction method which copes with such instances. It proposes a real-time
approach for estimating the position of occluded markers using previous positions
and information inferred from an approximate rigid body assumption. With a
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continuous stream of accurate 3D data, we can perform real-time CoR estimation,
thereby producing skeletal information for use in visual performance feedback.
Without assuming any skeleton model, we take advantage of the fact that, for
markers on a given limb segment, the inter-marker distance is approximately
constant. Also, the proposed system uses the information returned by each single
camera regarding the position of missing markers. Experiments demonstrate that
the method presented effectively recovers good estimates of the true positions of
the missing markers, even if large sequences with occluded data exist, in which
more than 1 marker is occluded on each limb, and also when the limb rapidly
changes direction. The system developed is suitable for real time processing and
provides excellent estimates of the markers’ position and the CoR location.

Chapter 5 presents a filtering extension of the proposed methodology. Using
a more sophisticated dynamic model (VTM) which takes account of the velocity
and the acceleration of the coordinates of each individual marker, we reduced the
error by 1.3% with a time processing addition of 12%. A further reduction can be
achieved using the Unscented Transformation in cooperation with a Kalman filter.
The UKF reduces the marker’s error by 7.9% and the CoR’s error by 14.2 when
one marker is missing, however increases the processing time by 20%. On the
contrary, both extrapolation and filtering prediction of the rotors, which express
the rotation between a reference frame and the current frame of a limb segment,
do not offer the expected error decrease. Even if the rotor prediction seems
to work reasonably using the Kalman theory, the 50% addition of processing
time remains a serious drawback. Since the rotor is re-calculated in each frame
using the predicted positions of the markers, any rotor estimation will have high
processing time.

Future work will introduce biomechanical constraints to restrict motions to
those from a feasible set. Hence, the Kalman filter should be extended by util-
ising a more sophisticated analysis of human motion. The use of accelerometers
and inertial sensors will also be studied. These sensors will be able to provide ad-
ditional information related to the limb orientation and the markers’ acceleration,
creating a more reliable system.
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A
Alternative Cost Function

Appendix A presents an alternative cost function used for calculating the CoR.
This new approach attempts to incorporate a model of noise with the cost function
used. For the simple derivation presented here, noise is assumed to be isotropic
Gaussian, although the form of the derivation also allows for non-isotropic cases.

It is assumed that 3 markers are available on either side of the joint. The CoR
in a given frame may be expressed as (mean of estimates from both sides)
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(A.1)

If we assume that the true rotors, vectors and location of the CoR are available
then the error may be expressed as
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This corresponds to measuring the sum squared error between the measured
marker locations and their locations assuming all parameters are known.

Substituting (A.1) into (A.2) and differentiating w.r.t. the vectors gives
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Now, the equivalent result using the conventional transformational algorithm
(as presented in Chapter 3) may be written
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The two resulting systems of linear equations may be easily shown to be equiv-
alent. For example, taking vector a1
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Thus from the point of view of estimating the vectors (stage 1 of a given
skeleton fitting algorithm) this new cost function has the same optimum as that
for the conventional transformational algorithm.

It is interesting to note that when considering using the cost functions to refine
the rotors within an iterative optimisation algorithm, the differential w.r.t. the
rotors’ bivector parameters are not equivalent.
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where Rk
x = exp(Bk

x) and Bk
x is the bivector associated with the x-limb rotation

in frame k.
In conclusion, we have shown that this alternative approach based on the as-

sumption of isotropic Gaussian noise and a perfect model gives identical results
to the simple model described in Chapter 3. This is true when the rotors are es-
timated independent of the assumption of a skeleton model. It is also interesting
to note that if the rotors are estimated jointly with the skeleton parameters, the
2 cost functions are not equivalent. This should be investigated further although
such an optimum may not be found in real-time situations and so does not lie
within the scope of this report.



List of Abbreviations

CoR - Centre of Rotation
CV - Constant Velocity
CDF - Cumulative Distribution Function
DOF - Degrees of Freedom
EKF - Extended Kalman Filter
GA - Geometric Algebra
GPLVN - Gaussian Process Latent Variable Model
KF - Kalman Filter
MMSE - Minimum Means Square Error
MoCap - Motion Capture
NCT - Nearly Constant Turn
OCGA - Oriented Conformal Geometric Algebra
RMMSE - Recursive Minimum Means Square Error
RV - Random Variable
SUT - Scaled Unscented Transform
UKF - Unscented Kalman Filter
UT - Unscented Transform
VTM - Variable Turn Model
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